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Let W:=¢e~2, where Q is even and of faster than polynomial growth at infinity.
For sufficiently smooth @, define the function 7(x) :=1 4 x0"(x);/Q'(x), whick has
fimit o at o«c. Let a, denote the nth Mhaskar-Rahmanov-Saff number for W, and
let (%7, x) denote the nth Christoffel function. We show that as n — o0,
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let W: R— R be even, positive, continuous, and such that all power
moments

|r XW(x)dx, j=0,1.2,..

Y-

exist. Associated with W? are the orthonormal polynomials p; of degree J,
j=0, 1, 2, .. satisfying

o

J pj(x) pk(x) Wz(x) dx = 5jk= j.* k= 0’ L 25
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The nth Christoffel function is
in—1

LW x):=1] ) pi(x), (1.2)
i j=0

xeR, n=1, 2,3, ...

In many questions concerning the convergence and the approximation
properties of orthonormal expansions associated with W2, the Christoffel
functions play a crucial role [4, 14]. In particular, the rate of growth as
n— oc of

Smax . gy /:"1—1( VI/Z, x) Wz(x)

YR

xelX
n—1
=max Yy p’(x)W3(x) (1.3)
XE < _I:O

was determined by Freud [4] for a class of weights containing exp( — |x|*),
a>2 and applied to prove (C, 1) boundedness of the partial sums of
orthonormal expansions associated with W2 Other authors [5, 6, 7, 15]
considered weights including exp(—|x|*), 0 <x < 2.

For the weights exp(—[x|*), x>0, results in [3-7, 15] imply that

1= x>1,
A~ < log n, x=1, (1.4)
1, a< 1.

Here ~ means that the ratio of the quantities on either side is bounded
above and below by positive constants independent of n. To further
elucidate this type of result, we need the Mhaskar-Rahmanov—Saff number
a, [11,12].

Let W:=¢ "9, where Q is even and differentiable in (0, oc ), while xQ’(x)
is strictly increasing in (0, o¢ ), with limits 0 and oc at x =0 and oc, respec-
tively. Then a, is the root of

2 el , dt ,
u=— JO a,tQ (aut)\/l___i, u>0. (L.5)
In general a, grows roughly like the inverse function of uQ’'(u) as u— x.
If @t~ denotes the inverse of Q, and if Q is of at least polynomial growth
at infinity, then a, grows roughly like Q'~')(u) as u — =. For classes of
weights W?=e¢ 29, where Q(x) grows faster than |x|*, some x> 1, the
results of [4, 6, 7] imply that

" max ~

AR nia,, 1= C. (1.6)

Pointwise asymptotics for 4,(W?2 x) appear in [1, 9, 13, 16].
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The quoted results treat the Q that is of polynomial growth at infinity.
What happens when Q is faster than polynomial growth at infinity” In
contrast to (1.6), it turns out that

lim AD®/(n/a,)= = (1.7
n— o :
To precisely state our result, which follows (in a non-trivial mannsr) from

pointwise asymptotics for 4,(W2 x)in [9], we need:

DepiNiTioN 1.1, Let W:=e <, where O is even and continuous in R;
AY

@ exists in {0, oc ), and Q' is positive in (0, oc ). Let
T(x):=14+xQ"(x);Q'(x). xe{0, x . {1.8}

be increasing in (0, o¢ ), with

im T(x)=T(0+)>1, R
X 0
lim T(x)=oc, LG
and for each ¢>0,
T(x)=0(Q'(x)*), xX— o, {11

Assume further that

Ql:(x) ~Ql{x) x large enough, (1i2)
Q'(x) Q(x)
and for some C>0,
10" (x)| [Q'(xN? } o
- <C : , x large encugh. (.13
o <o) e

Then we say that W is an Erdds weight of class 3 and write We SE*(31
Remarks. (a) The limit (1.10) implies that Q(x) grows faster than any
polynomial, while (1.11) is a weak regularity condition: one typically has
8,97
T(x)=0([log Q'{(x)1'"*),  x—cx, (1.14)

for each £>0. The restriction (1.9} simplifies analysis, but can be
weakened.

(b) The class SE*(3) is contained in the class SE(3} of [9], for in
[97 we take only ¢ = in (1.11).
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(¢) As examples of We SE*(3), we mention

Wix) :=exp(—exp,.(|x]*)), xeR, (1.15)

a>1, k=1, where exp, denotes the kth iterated exponential exp(exp---).
Another exampie is

W(x) :=exp(—exp{log(4+x?)}*), xeR, (1.16)

a>1, A large enough.

Our main result is:

THEOREM 1.2. Let W:=e 2eSE*(3), and let a,,, n> 1, denote the nth
Mhaskar-Rahmanov-Saff number for Q, defined by (1.5). Then for n= 1,

max 47 (W2, x) W3(x)~ - T(a,)" (1.17)
and
2 o r2e o | x| om
max i, (W',x)W(x)}I— =~ (1.18)

Remarks. (a) We note that T(a,) grows slowly and typically for each
e>0,

T(a,)=o(logn)'**,  n—o0.

For W of (1.15), one has even [8]

k
T(a,)~ [] log;n, n— o, (1.19)
=1
where log; =log(log---) denotes the jth iterated logarithm.
(b) The proof of (1.17) shows that if 0<x<f <1,

/"; l( W'27 am) Wz(atn) ~_a’_1— T(an)l!lz: (120)
uniformly for te [«, ], n— oC.

(¢) Theorem 1.2 has applications in studying the orthonormal
expansions associated with Erddés weights, which the second author hopes
to present elsewhere.
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(d) Because of the monotonicity properties of Christoffel functions,
one can derive analogues of Theorem 1.2 for weights W, ~ #We SE*(3}.

The proofs are presented in Section 2.

2. PrROOFs

Throughout, C, C,, C,, C;, .. denote positive constants independent of
n and x; the same symbol does not necessarily denote the same constant in
different occurrences.

We first gather some results from [97:

LemMa 2.1, Ler We SE*(3). Let

2 /1 —x\Y2q,50(a,s)—a,x0'(a,x
=2 Q) — @ Q@)
IT~0 \1~s n(s*—x*)
xe{—1,1), n=1. Then there exists 6 >0 such that
, . a, , ;s U
ATHWE, a,x) Wi a,x) — =, . (x}+ O{n"'7), 2.0
" .
uniformly for
xI<l—n"2 (2.3

Proof. This is (2.23) of Theorem 2.3 in [9]. §

For the reader unfamiliar with p, ,, we note that it is the non- negaf_
density function that solves an integral equation with logarithmic kern
(10, Lemma 5.3, p. 371].

LemMMA 2.2, Let We SE*(3).

{a} Then for xe[—1,1], n=1,

H(X) < Cy T(@,) (2.4
{b) Given 0 <e<1, there exists ny such that
Pne(x)~1,  |xi<l—g  n2n, (2.5
{c) We have for j=0, 1, 2,
a’QYa,)~nT(a,) ~'7, 1= n,. (2.5}
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(d) For any fixed 0 <a<f < o0, as 1 — o,
T(azn) ~ T(aBn) (27)
and
[— axn./aﬁn ~ T(an)—l' (28)
Proof. (a) and (b) are respectively (e) and (c) of Lemma4.3 in [9],
with R=a,,.
(¢) This is (3.15) of Lemmma 3.2(c) in [9].

(d) Firstly, (2.7) is Lemma 3.4(c) in [9]. Also, by Lemma 3.4(b) in
91

a,ja,~(tT(a,))” ", t large enough.

Hence

a“'l .‘ﬂn [
log|— = a,ja, dt
aB’l Yan

~fBn
~| " (tT(a)) " dr

v an

rBn
~T(a,)™"| t7'dt~T(a,)~".

voan

Then (2.8) follows. ]

We can now prove a result that may be of independent interest:

THEOREM 2.3. Let WeSE*(3). Then given O<a<f <1, for n large
enough,

max i, ,,(x)~ I(a,)"* (29)
[—1.1]
~ min iln,a,.(atn//an)' (210)
tefxB] )

Proof. In view of (2.4), it suffices to show that
l’ln,a,,(am./an) > CT(an)llza (21 1 )

uniformly for re [« 1. First note that d/du(uQ’'(u))= Q' (u) T(u) is
positive in (0, o¢). It is also increasing for large u, since T(u) is increasing
in (0,oc) and Q'(u) is increasing for large uw (for Q"(u)=
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Q' (uX T(u)— 1)/u>0, u large). It follows that uQ'(u) is convex for large «.
Then for n>n,, x> 1 fixed,

- a,50'(a,s)—a,xQ'"a,x; PR
4,(s) = . (Loid;
a,5—a,x

is a positive function of s€ (0, = ) and is aiso increasing if s (3, o }. From
(2.1), for xe{i, 11,

|4
—
et
I
o
(S
—
—

a

lun,a,,(x) 2 Cl
b1
>c‘z§’f(1—x> 4,(x)

VU= X

d
=2 (1= ) (o))
n du

aﬂ ’ \ ~ 3\
=C,—(1—-x)0'(a,x) IT{a,x). {243
n
Now if x=a,,/a,. te[a, B, then by (2.8},
1 —x>21—agja,~T(a,; ",
while by (2.6} and (2.7),
a?l Q’(an'x) T(anx) > alIZQ'(aln) T(ain) ~ nT{aﬁ )3:'
Then (2.11) follows. |
We need one more estimate for yu, , :
THEOREM 2.4. Let We SE*(3). Then for n large enough,
max 1, ., (x}(1—x)~ i (2.14)
[-1.1]
Proof. In view of (2.5), it suffices to show that
o (X)(1 = X322 C, ig<x<t {2.15}

A,{(s) be defined by (2.12). Then from (2.1}, for xe[3, 11,

eds = s
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al
a1 =X <000 T [ A, ()1 =572 ds
n -9

} n x — d(x) px + 8(x) al
=C1(>(x)%{fo + | +] }

Yx—dix) “x-L8(x)

X A,(s)(1 —s*) Y2 ds
= C, 5(x)‘—;£ I, +1L+1). (2.16)

Firstly, since 1Q'(z) is positive and increasing in (0, «c), we see from the
definition (2.12) of 4,,(s) that

x=ox) g, xQ'(a,x
L<| XQ'(a,x)
o a,x—a,s

< CyxQ'(a,x) o(x)~"?

(1—5%)""2 ds

(fora,x—a,s>a, d(x))
<CaxQ(a, )00~ [ (1-57) 1 as

(by choice ofé()é))
<Cyay (1) | 0,50/ (@,5)(1 ~57) "+ ds

<Csa;'8(x) 'n, (2.17)

by definition (1.5) of a,. Next, if se [x—d(x), x+ 6(x)], then for some ¢
between x and s,

d
A,(5)= o (uQ' (U= ae

=T(a,&) 0'(a,$)
ax+ 38(x)/2

<Ced(x)"| T(a,t) Q'(a,t) dt
Y x4 3(x)

(as T(u) Q’'(u) is increasing for large u)

< Ce 0(x) ™! (x +38(x)/2) Q'(a,(x + 30(x)/2))

(35 [ 70 00 =)

<Cr6(x) " a, a,50"(a,s)(1— %)~ ds

1
‘[r +35(x)2

< Cgd(x) 2 a;'n



)
N
Ced

SUPREMUM NORM OF RECIPROCALS

Hence
N n o osxX+ S(x) 5 i
L<Cyd(x)72— | {(1—s) "1 ds
Ay v x —5(x)
N n ~
<Cod(x)~ ' —. {2.18}
Mn
Finally,
al ‘
a,sQ'(a,s) T
ISSJ —'£~—"~(1—s2;“-2a5
x+ d(x) ans_anx
1 o 1 “1 . ] Y .
<a,; ' o(x)"| a,sQ'(a,s)(1—s?) "2 ds
v x + d(x)
<Cpa, ' é(x) ' n {2.1%

Combining (2.16) to (2.19) yields (2.15). §

We need one more lemma:

LemMa 2.5, Let We SE*(3)and n = 1. k= 1. Then for all polynomiais P
of degree at most kn,

i;PWkHL,.(@): I;!.PI’Vki:!Lx[,ﬁ,,_an]- (:’«2[\}\?

Proof. If Q is even and convex, this proof follows from Theorem 2.1

and 2.2 in [12, p.73]-see [12, p.77]. In the slightly different case,

We SE*(3), the result follows from (35.1) of Theorem 5.1 in {97, with ¥
replaced by W*. |

Proof of (1.17} of Theorem 1.2. From Lemma 2.1, for a suitable &.
which remains fixed throughout this proof,

max A7 NWP x) Wix)a,in
lxl S ay(l ~n=%)
— max g, (0+o(l) (221)

|xI €1 —n—°
Now from (1.11) and (2.6), for each ¢>0, as n — =,
a,Q'(a,)~nT(a,)"? = 0(nQ'a,)*?).
We deduce that for each >0, as n — x.

Q'(a,)=O(nfa,)' " "= o(n'*").
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Hence from this last inequality and (1.11), for each ¢>0, as n — =,

T{a,)= O(n®). (2.22)

Then (2.8) shows that if 0 <z < f < oc and 0<e¢ <4, for n large enough,

A fotpy S1—n"2<1=n"" (2.23)

Hence Theorem 2.3 shows that

max g, . (x)~ T(a,)"> (2.24)
xlst—n—2° -
So from (2.21),
max AN W2, x) Wi (x)a,/n~ T(a,)*". (2.25)

Ix; an(l—n~?)

Since /_'(W? x) is a polynomial of degree <2n—2, Lemma 2.5 yields

max 2 (W2 x) Wz(x)%

xeR

= max /YW x) Wz(x)ﬂ
n

n
xe[—apay]
5 — 10 pr2 20\ n
€ max A, (W5 x) Wix)—=
xe[—ana] n

: a
= max A W2, ay,t) Wia,,t) ==

te [—anazm, aniam] n

<2 max AN ant) WHan )22 (by (223))

l<1—(2m)=9 2n
~ T(a2n)1112 ~ T(a")l_'Z’
by (2.25) and (2.7). |
The proof also shows that if 0<a < f <1,
F OV, a,%) Wa,x) ~ - (@), (2.26)
uniformly for x e [a,./a,, ag,/a,].

Proof of (1.18) of Theorem 1.2. Since 7 *(W?2 x)(1 —{(x/a,)?) is a
polynomial of degree <4n— 2, Lemma 2.5 shows that
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max A, (W2 x) il — (x/a,)*| Wix)

xXewR

= max A, (W7 x) |1 —(x/a, ) WHx)

xe{ —apa,]

< max A 0(Wx) |1 —(x/a,,) WiHx)
x€l —apan]
( . 2 | L2312 2
=i _ max A W2, ag, 1) WiHas, 01— 1) 7}
tel —apay.anam]
<{ max SN2, ay, 1) Wias, {1 —

[FE 7n"’

(by (2.23), with d as in Lemma 2.1}

( n V2 /o \ 2
: ‘o 24072 P A
<{2—  max g, (r{1—-2320 <O {1,
L a, ' n<1-m77 : } \Gii/

by Lemma 2.1 and Theorem 2.4, for n large enough. Finally, Lemma 2.1
and Lemma 2.2{b) show that given 0 <e< 1,

. n
AW X) WHx) ~—,

n
uniformly for jx| < (1 —¢)a,, for n large enough. Henc

s 2 RS 5720 N .
max 27 (W2 x) U= ixfa,)2 1 WHx = Cynia,. §

xeR
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