The Supremum Norm of Reciprocals of Christoffel Functions for Erdös Weights

D. S. Llbinsky* and T. Z. Mthembe
Departmeni of Mathematics, Witwatersrand Lniversity, P.O. Wits 2050, Republic of South Africa
Communicated by Paul Ne:ai
Received April 28, 1989; revised August 20, 1989

Let $W:=e^{-Q}$, where Q is cven and of faster than polynomial growth at infinity. For sufficiently smooth Q, define the function $T(x):=1+x Q^{\prime \prime}(x) ; Q^{\prime}(x)$, which has limit x at x. Let a_{n} denote the nth Mhaskar-Rahmanov-Saff number for \bar{W}, and let $\lambda_{n}\left(W^{2}, x\right)$ denote the nth Christoffel function. We show that as $n \rightarrow \infty$,

$$
\max _{x \in \mathscr{K}} i_{n}^{-1}\left(W^{2}, x\right) W^{2}(x)-\frac{n}{a_{n}} T\left(a_{n}\right)^{1 \cdot 2}
$$

and

$$
\max _{x \equiv \mathbb{R}} \dot{\lambda}_{n}^{-1}\left(W^{2}, x\right) W^{2}(x)!1-\left(x: a_{n}\right)^{2} 1^{1 \cdot 2} \sim \frac{n}{a_{n}} .
$$

© 1990 Academic Press, Inc.

1. Introduction and Statement of Reslets

Let $W: \mathbb{R} \rightarrow \mathbb{R}$ be even, positive, continuous, and such that all power moments

$$
\int_{-\infty}^{\infty} x^{j} W(x) d x, \quad j=0,1,2, \ldots
$$

exist. Associated with W^{2} are the orthonormal polynomials p_{j} of degree j, $j=0,1,2, \ldots$ satisfying

$$
\begin{equation*}
\int_{-\infty}^{\infty} p_{j}(x) p_{k}(x) W^{2}(x) d x=\delta_{j k}, \quad j, k=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

* Research completed while the author was visiting E. B. Saff at the Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, FL 33620.

The nth Christoffel function is

$$
\begin{equation*}
\lambda_{n}\left(W^{2}, x\right):=1 / \sum_{j=0}^{n-1} p_{j}^{2}(x) \tag{1.2}
\end{equation*}
$$

$x \in \mathbb{R}, n=1,2,3, \ldots$
In many questions concerning the convergence and the approximation properties of orthonormal expansions associated with W^{2}, the Christoffel functions play a crucial role $[4,14]$. In particular, the rate of growth as $n \rightarrow \infty$ of

$$
\begin{align*}
i_{n}^{\max } & :=\max _{x \in \mathbb{G}} i_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) \\
& =\max _{x \in K} \sum_{j=0}^{n-1} p_{j}^{2}(x) W^{2}(x) \tag{1.3}
\end{align*}
$$

was determined by Freud [4] for a class of weights containing $\exp \left(-|x|^{x}\right)$, $\alpha \geqslant 2$ and applied to prove $(C, 1)$ boundedness of the partial sums of orthonormal expansions associated with W^{2}. Other authors $[5,6,7,15]$ considered weights including $\exp \left(-|x|^{x}\right), 0<\alpha<2$.

For the weights $\exp \left(-|x|^{x}\right), x>0$, results in [3-7,15] imply that

$$
i_{n}^{\max } \sim \begin{cases}n^{1-1: x}, & x>1 \tag{1.4}\\ \log n, & x=1 \\ 1, & x<1\end{cases}
$$

Here \sim means that the ratio of the quantities on either side is bounded above and below by positive constants independent of n. To further elucidate this type of result, we need the Mhaskar-Rahmanov-Saff number $a_{n}[11,12]$.

Let $W:=e^{-Q}$, where Q is even and differentiable in $(0, \infty)$, while $x Q^{\prime}(x)$ is strictly increasing in $(0, \infty)$, with limits 0 and \propto at $x=0$ and ∞, respectively. Then a_{u} is the root of

$$
\begin{equation*}
u=\frac{2}{\pi} \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right) \frac{d t}{\sqrt{1-t^{2}}}, \quad u>0 \tag{1.5}
\end{equation*}
$$

In general a_{u} grows roughly like the inverse function of $u Q^{\prime}(u)$ as $u \rightarrow \infty$. If $Q^{[-1]}$ denotes the inverse of Q, and if Q is of at least polynomial growth at infinity, then a_{u} grows roughly like $Q^{[-1]}(u)$ as $u \rightarrow \infty$. For classes of weights $W^{2}=e^{-2 Q}$, where $Q(x)$ grows faster than $|x|^{x}$, some $\alpha>1$, the results of $[4,6,7]$ imply that

$$
\begin{equation*}
\lambda_{n}^{\max } \sim n / a_{n}, \quad n \rightarrow \infty . \tag{1.6}
\end{equation*}
$$

Pointwise asymptotics for $i_{n}\left(W^{2}, x\right)$ appear in $[1,9,13,16]$.

The quoted results treat the Q that is of polynomial growth at infinity, What happens when Q is faster than polynomial growth at infinity: In contrast to (1.6), it turns out that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda_{n}^{\max } ;\left(n / a_{n}\right)=\infty \tag{1.7}
\end{equation*}
$$

To precisely state our result, which follows (in a non-trivial manner) from pointwise asymptotics for $i_{n}\left(W^{2}, x\right)$ in [9], we need:

Defintion 1.1. Let $W:=e^{-Q}$, where Q is even and continuous in \mathbb{R}; $Q^{\prime \prime \prime}$ exists in $(0, x)$, and Q^{\prime} is positive in $(0, \infty)$ Let

$$
T(x):=1+x Q^{\prime \prime}(x) / Q^{\prime}(x) . \quad x \in(0, x)
$$

be increasing in $(0, x)$, with

$$
\begin{align*}
& \lim _{x \rightarrow 0-} T(x)=T(0+)>1 \tag{1.9}\\
& \lim _{x \rightarrow \infty} T(x)=\infty \tag{1.10}
\end{align*}
$$

and for each $\varepsilon>0$,

$$
\begin{equation*}
T(x)=O\left(Q^{\prime}(x)^{c}\right), \quad x \rightarrow x \tag{1,11}
\end{equation*}
$$

Assume further that

$$
\begin{equation*}
\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)} \sim \frac{Q^{\prime}(x)}{Q(x)}, \quad x \text { large enough } \tag{1,12}
\end{equation*}
$$

and for some $C>0$,

$$
\begin{equation*}
\frac{\left|Q^{\prime \prime \prime}(x)\right|}{Q^{\prime}(x)} \leqslant C\left\{\frac{Q^{\prime}(x)}{Q(x)}\right\}^{2}, \quad x \text { large enough } \tag{1.13}
\end{equation*}
$$

Then we say that W is an Erdös weight of class 3 and write $W \in S E^{*}(3)$
Remarks. (a) The limit (1.10) implies that $Q(x)$ grows faster than any polynomial, while (1.11) is a weak regularity condition: one typically has [8,9]

$$
\begin{equation*}
T(x)=O\left(\left[\log Q^{\prime}(x)\right]^{1+s}\right), \quad x \rightarrow \infty \tag{1.14}
\end{equation*}
$$

for each $\varepsilon>0$. The restriction (1.9) simplifies analysis, but can be weakened.
(b) The class $S E^{*}(3)$ is contained in the class $S E(3)$ of [9$]$, for in [9] we take only $\varepsilon=\frac{1}{15}$ in (1.11).
(c) As examples of $W \in S E^{*}$ (3), we mention

$$
\begin{equation*}
W(x):=\exp \left(-\exp _{k}\left(|x|^{x}\right)\right), \quad x \in \mathbb{R}, \tag{1.15}
\end{equation*}
$$

$\alpha>1, k \geqslant 1$, where $\exp _{k}$ denotes the k th iterated exponential $\exp (\exp \cdots)$. Another example is

$$
\begin{equation*}
W(x):=\exp \left(-\exp \left\{\log \left(A+x^{2}\right)\right\}^{x}\right), \quad x \in \mathbb{R}, \tag{1.16}
\end{equation*}
$$

$\alpha>1, A$ large enough.
Our main result is:

Theorem 1.2. Let $W:=e^{-Q} \in S E^{*}(3)$, and let $a_{n}, n \geqslant 1$, denote the $n t h$ Mhaskar-Rahmanov-Saff number for Q, defined by (1.5). Then for $n \geqslant 1$,

$$
\begin{equation*}
\max _{x \in \mathbb{Z}} \hat{\lambda}_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) \sim \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2} \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{x \in \mathbb{\pi}} i_{n}^{-1}\left(W^{2}, x\right) W^{2}(x)\left|1-\left(\frac{x}{a_{n}}\right)^{2}\right|^{1: 2} \sim \frac{n}{a_{n}} . \tag{1.18}
\end{equation*}
$$

Remarks. (a) We note that $T\left(a_{n}\right)$ grows slowily and typically for each $\varepsilon>0$,

$$
T\left(a_{n}\right)=o(\log n)^{1+\varepsilon}, \quad n \rightarrow \infty .
$$

For W of (1.15), one has even [8]

$$
\begin{equation*}
T\left(a_{n}\right) \sim \prod_{j=1}^{k} \log _{j} n, \quad n \rightarrow \infty \tag{1.19}
\end{equation*}
$$

where $\log _{j}=\log (\log \cdots)$ denotes the j th iterated logarithm.
(b) The proof of (1.17) shows that if $0<\alpha<\beta<1$,

$$
\begin{equation*}
\dot{\lambda}_{n}^{-1}\left(W^{2}, a_{t n}\right) W^{2}\left(a_{t n}\right) \sim \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2} \tag{1.20}
\end{equation*}
$$

uniformly for $t \in[\alpha, \beta], n \rightarrow \infty$.
(c) Theorem 1.2 has applications in studying the orthonormal expansions associated with Erdös weights, which the second author hopes to present elsewhere.
(d) Because of the monotonicity properties of Christoffel functions, one can derive analogues of Theorem 1.2 for weights $W_{1} \sim W \in S E^{*}(3)$.

The proofs are presented in Section 2.

2. Proofs

Throughout, $C, C_{1}, C_{2}, C_{3}, \ldots$ denote positive constants independent of n and x; the same symbol does not necessarily denote the same constant in different occurrences.

We first gather some results from [9]:
Lemma 2.1. Let $W \in S E^{*}(3)$ Let

$$
\begin{equation*}
\mu_{n \cdot a_{n}}(x):=\frac{2}{\Pi^{2}} \int_{0}^{1}\left(\frac{1-x^{2}}{1-s^{2}}\right)^{1: 2} \frac{a_{n} s Q^{\prime}\left(a_{n} s\right)-a_{n} x Q^{\prime}\left(a_{n} x\right)}{n\left(s^{2}-x^{2}\right)} d s, \tag{2.1}
\end{equation*}
$$

$x \in(-1,1), n \geqslant 1$. Then there exists $\delta>0$ such that

$$
\begin{equation*}
\lambda_{n}^{-1}\left(W^{2}, a_{n} x\right) W^{2}\left(a_{n} x\right) \frac{a_{n}}{n}=\mu_{n, a_{n}}(x)+O\left(n^{-1.5}\right), \tag{2,2}
\end{equation*}
$$

uniformly for

$$
|x| \leqslant 1-n^{-b} .
$$

Proof. This is (2.23) of Theorem 2.3 in [9].
For the reader unfamiliar with $\mu_{n . a_{n}}$, we note that it is the non-negative density function that solves an integral equation with logarithmic kernel [10, Lemma 5.3, p. 37].

Lemma 2.2. Let $W \in S E^{*}(3)$.
(a) Then for $x \in[-1,1], n \geqslant 1$,

$$
\begin{equation*}
\mu_{n, a_{n}}(x) \leqslant C_{1} T\left(a_{n}\right)^{1 \cdot 2} . \tag{2.4}
\end{equation*}
$$

(b) Given $0<\varepsilon<1$, there exists n_{0} such that

$$
\begin{equation*}
\mu_{n, c_{n}}(x) \sim 1, \quad|x| \leqslant 1-\varepsilon, \quad n \geqslant n_{0} . \tag{2.5}
\end{equation*}
$$

(c) We have for $j=0,1,2$,

$$
\begin{equation*}
a_{n}^{j} Q^{(j)}\left(a_{n}\right) \sim n T\left(a_{n}\right)^{i-12} . \quad n \geqslant n_{0} . \tag{2.6}
\end{equation*}
$$

(d) For any fixed $0<\alpha<\beta<\infty$, as $n \rightarrow \infty$,

$$
\begin{equation*}
T\left(a_{x n}\right) \sim T\left(a_{\beta n}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
1-a_{x n} / a_{\beta n} \sim T\left(a_{n}\right)^{-1} . \tag{2.8}
\end{equation*}
$$

Proof. (a) and (b) are respectively (e) and (c) of Lemma 4.3 in [9], with $R=a_{n}$.
(c) This is (3.15) of Lemma 3.2(c) in [9].
(d) Firstly, (2.7) is Lemma 3.4(c) in [9]. Also, by Lemma 3.4(b) in [9],

$$
a_{t}^{\prime} / a_{t} \sim\left(t T\left(a_{t}\right)\right)^{-1}, \quad t \text { large enough. }
$$

Hence

$$
\begin{aligned}
\log \left(\frac{a_{x n}}{a_{\beta n}}\right)= & \int_{x n}^{\beta n} a_{t}^{\prime} / a_{t} d t \\
& \sim \int_{\alpha n}^{\beta n}\left(t T\left(a_{t}\right)\right)^{-1} d t \\
& \sim T\left(a_{n}\right)^{-1} \int_{\alpha n}^{\beta n} t^{-1} d t \sim T\left(a_{n}\right)^{-1} .
\end{aligned}
$$

Then (2.8) follows.
We can now prove a result that may be of independent interest:
Theorem 2.3. Let $W \in S E^{*}(3)$. Then given $0<\alpha<\beta<1$, for n large enough,

$$
\begin{align*}
\max _{[-1,1]} \mu_{n, a_{n}}(x) & \sim T\left(a_{n}\right)^{1 / 2} \tag{2.9}\\
& \sim \min _{t \in[x, \beta]} \mu_{n, a_{n}}\left(a_{t n} / a_{n}\right) \tag{2.10}
\end{align*}
$$

Proof. In view of (2.4), it suffices to show that

$$
\begin{equation*}
\mu_{n, a_{n}}\left(a_{t n} / a_{n}\right) \geqslant C T\left(a_{n}\right)^{1 \cdot 2}, \tag{2.11}
\end{equation*}
$$

uniformly for $t \in[\alpha, \beta]$. First note that $d / d u\left(u Q^{\prime}(u)\right)=Q^{\prime}(u) T(u)$ is positive in $(0, \infty)$. It is also increasing for large u, since $T(u)$ is increasing in $(0, \infty)$ and $Q^{\prime}(u)$ is increasing for large u (for $Q^{\prime \prime}(u)=$
$Q^{\prime}(u)(T(u)-1) / u>0, u$ large $)$. It follows that $u Q^{\prime}(u)$ is convex for large u. Then for $n \geqslant n_{1}, x \geqslant \frac{1}{2}$ fixed,

$$
\begin{equation*}
\Delta_{n}(s):=\frac{a_{n} s Q^{\prime}\left(a_{n} s\right)-a_{n} \times Q^{\prime}\left(a_{n} x\right)}{a_{n} s-a_{n} x} \tag{2.12}
\end{equation*}
$$

is a positive function of $s \in(0, x)$ and is aiso increasing if $s \in\left(\frac{1}{2}, \infty\right)$. From (2.1), for $x \in\left[\frac{1}{2}, 1\right]$,

$$
\begin{align*}
\mu_{n, a_{n}}(x) & \geqslant C_{1} \frac{a_{n}}{n}\left(1-x^{2}\right)^{1: 2} \int_{x}^{1} A_{n}(s)\left(1-s^{2}\right)^{-1: 2} d s \\
& \geqslant C_{2} \frac{a_{n}}{n}(1-x) \Delta_{n}(x) \\
& =\left.C_{2} \frac{a_{n}}{n}(1-x) \frac{d}{d u}\left(u Q^{\prime}(u)\right)\right|_{u=a_{n} x} \\
& =C_{2} \frac{a_{n}}{n}(1-x) Q^{\prime}\left(a_{n} x\right) T\left(a_{n} x\right) \tag{2.13}
\end{align*}
$$

Now if $x=a_{i n} / a_{n}, t \in[\alpha, \beta]$, then by (2.8),

$$
1-x \geqslant 1-a_{\beta n} a_{n} \sim T\left(a_{n}\right)^{-1}
$$

while by (2.6) and (2.7),

$$
a_{n} Q^{\prime}\left(a_{n} x\right) T\left(a_{n} x\right) \geqslant a_{x n} Q^{\prime}\left(a_{x n}\right) T\left(a_{x n}\right) \sim n T\left(a_{n}\right)^{3: 2}
$$

Then (2.11) follows.
We need one more estimate for $\mu_{n, a_{n}}$:

Theorem 2.4. Let $W \in S E^{*}(3)$. Then for n large enough,

$$
\begin{equation*}
\max _{[-1,1]} \mu_{n, a_{n}}(x)\left(1-x^{2}\right)^{1: 2} \sim 1 \tag{2.14}
\end{equation*}
$$

Proof. In view of (2.5), it suffices to show that

$$
\begin{equation*}
\mu_{n, a_{n}}(x)\left(1-x^{2}\right)^{1 / 2} \leqslant C, \quad \frac{3}{4} \leqslant x \leqslant 1 \tag{2.15}
\end{equation*}
$$

Let $\delta(x):=(1-x) / 2$. Note that $x+\delta(x)<x+2 \delta(x)=1$, for $x \in\left[\frac{3}{4}, 1\right]$. Let $A_{n}(s)$ be defined by (2.12). Then from (2.1), for $x \in\left[\frac{3}{4}, 1\right]$,

$$
\begin{align*}
\mu_{n, a_{n}}(x)\left(1-x^{2}\right)^{1 / 2} \leqslant & C_{1} \delta(x) \frac{a_{n}}{n} \int_{0}^{1} \Delta_{n}(s)\left(1-s^{2}\right)^{-1 / 2} d s \\
= & C_{1} \delta(x) \frac{a_{n}}{n}\left\{\int_{0}^{x-\delta(x)}+\int_{x-\delta(x)}^{x+\delta(x)}+\int_{x+\delta(x)}^{1}\right\} \\
& \times A_{n}(s)\left(1-s^{2}\right)^{-1 / 2} d s \\
= & C_{1} \delta(x) \frac{a_{n}}{n}\left\{I_{1}+I_{2}+I_{3}\right\} \tag{2.16}
\end{align*}
$$

Firstly, since $t Q^{\prime}(t)$ is positive and increasing in ($0, \infty$), we see from the definition (2.12) of $\Delta_{n}(s)$ that

$$
\begin{aligned}
I_{1} & \leqslant \int_{0}^{x-\delta(x)} \frac{a_{n} x Q^{\prime}\left(a_{n} x\right)}{a_{n} x-a_{n} s}\left(1-s^{2}\right)^{-1 / 2} d s \\
& \leqslant C_{2} x Q^{\prime}\left(a_{n} x\right) \delta(x)^{-1 / 2} \\
& \quad\left(\text { for } a_{n} x-a_{n} s \geqslant a_{n} \delta(x)\right) \\
& \leqslant C_{3} x Q^{\prime}\left(a_{n} x\right) \delta(x)^{-1} \int_{x}^{1}\left(1-s^{2}\right)^{-1 / 2} d s
\end{aligned}
$$

(by choice of $\delta(x)$)

$$
\begin{align*}
& \leqslant C_{4} a_{n}^{-1} \delta(x)^{-1} \int_{x}^{1} a_{n} s Q^{\prime}\left(a_{n} s\right)\left(1-s^{2}\right)^{-1 / 2} d s \\
& \leqslant C_{5} a_{n}^{-1} \delta(x)^{-1} n \tag{2.17}
\end{align*}
$$

by definition (1.5) of a_{n}. Next, if $s \in[x-\delta(x), x+\delta(x)]$, then for some ξ between x and s,

$$
\begin{aligned}
\Delta_{n}(s) & =\left.\frac{d}{d u}\left(u Q^{\prime}(u)\right)\right|_{u=a_{n} \xi} \\
& =T\left(a_{n} \xi\right) Q^{\prime}\left(a_{n} \xi\right) \\
& \leqslant C_{6} \delta(x)^{-1} \int_{x+\delta(x)}^{x+3 \delta(x) / 2} T\left(a_{n} t\right) Q^{\prime}\left(a_{n} t\right) d t
\end{aligned}
$$

(as $T(u) Q^{\prime}(u)$ is increasing for large u)

$$
\leqslant C_{6} \delta(x)^{-1}(x+3 \delta(x) / 2) Q^{\prime}\left(a_{n}(x+3 \delta(x) / 2)\right)
$$

$$
\left(\text { as } \int T(u) Q^{\prime}(u) d u=u Q^{\prime}(u)\right)
$$

$$
\leqslant C_{7} \delta(x)^{-3 / 2} a_{n}^{-1} \int_{x+3 \delta(x) ; 2}^{1} a_{n} s Q^{\prime}\left(a_{n} s\right)\left(1-s^{2}\right)^{-1 / 2} d s
$$

$$
\leqslant C_{8} \delta(x)^{-3 / 2} a_{n}^{-1} n
$$

Hence

$$
\begin{align*}
I_{2} & \leqslant C_{8} \delta(x)^{-3: 2} \frac{n}{a_{n}} \int_{x-\delta(x)}^{x+\delta(x)}\left(1-s^{2}\right)^{-1 \cdot 2} d s \\
& \leqslant C_{9} \delta(x)^{-1} \frac{n}{a_{n}} \tag{2.18}
\end{align*}
$$

Finally,

$$
\begin{align*}
I_{3} & \leqslant \int_{x+\delta(x)}^{1} \frac{a_{n} s Q^{\prime}\left(a_{n} s\right)}{a_{n} s-a_{n} x}\left(1-s^{2}\right)^{-1 / 2} d s \\
& \leqslant a_{n}^{-1} \delta(x)^{-1} \int_{x+\delta(x)}^{1} a_{n} s Q^{\prime}\left(a_{n} s\right)\left(1-s^{2}\right)^{-1: 2} d s \\
& \leqslant C_{10} a_{n}^{-1} \delta(x)^{-1} n \tag{2.19}
\end{align*}
$$

Combining (2.16) to (2.19) yields (2.15).
We need one more lemma:

Lemma 2.5. Let $W \in S E^{*}(3)$ and $n \geqslant 1, k \geqslant 1$. Then for all polynomials P of degree at most $k n$,

$$
\begin{equation*}
\left\|_{i} P W^{k}\right\|_{L_{x}(\mathbb{R})}=!P W^{k} \dot{l}_{L_{x x}\left[-a_{n}, a_{n}\right]} . \tag{2.20}
\end{equation*}
$$

Proof. If Q is even and convex, this proof follows from Theorem 2.1 and 2.2 in $[12$, p. 73]-see $[12, ~ p .77]$. In the slightly different case, $W \in S E^{*}(3)$, the result follows from (5.1) of Theorem 5.1 in [9], with W replaced by W^{k}.

Proof of (1.17) of Theorem 1.2. From Lemma 2.1, for a suitable δ. which remains fixed throughout this proof,

$$
\begin{gather*}
\max _{|x| \leqslant a_{n}\left(1-n^{-5}\right)} i_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) a_{n} i n \\
=\max _{|x| \leqslant 1-n^{-5}} \mu_{n_{n} a_{n}}(x)+o(1) \tag{2.21}
\end{gather*}
$$

Now from (1.11) and (2.6), for each $\varepsilon>0$, as $n \rightarrow \infty$,

$$
a_{n} Q^{\prime}\left(a_{n}\right) \sim n T\left(a_{n}\right)^{1: 2}=O\left(n Q^{\prime}\left(a_{n}\right)^{2 \cdot 2}\right)
$$

We deduce that for each $\eta>0$, as $n \rightarrow \infty$.

$$
Q^{\prime}\left(a_{n}\right)=O\left(n / a_{n}\right)^{1+n}=o\left(n^{i+n}\right)
$$

Hence from this last inequality and (1.11), for each $\varepsilon>0$, as $n \rightarrow x$,

$$
\begin{equation*}
T\left(a_{n}\right)=O\left(n^{\varepsilon}\right) \tag{2.22}
\end{equation*}
$$

Then (2.8) shows that if $0<\alpha<\beta<\infty$ and $0<\varepsilon<\delta$, for n large enough,

$$
\begin{equation*}
a_{x n} / \alpha_{\beta n} \leqslant 1-n^{-\varepsilon}<1-n^{-\delta} . \tag{2.23}
\end{equation*}
$$

Hence Theorem 2.3 shows that

$$
\begin{equation*}
\max _{|x| \leqslant 1-n^{-\delta}} \mu_{n, a_{n}}(x) \sim T\left(a_{n}\right)^{1: 2} \tag{2.24}
\end{equation*}
$$

So from (2.21),

$$
\begin{equation*}
\max _{\mid x: \leqslant a_{n}\left(1-n^{-\delta}\right)} i_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) a_{n} / n \sim T\left(a_{n}\right)^{1,2} \tag{2.25}
\end{equation*}
$$

Since $\lambda_{n}^{-1}\left(W^{2}, x\right)$ is a polynomial of degree $\leqslant 2 n-2$, Lemma 2.5 yields

$$
\begin{aligned}
\max _{x \in \mathcal{F}} & i_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) \frac{a_{n}}{n} \\
& =\max _{x \in\left[-a_{n} a_{n}\right]} \lambda_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) \frac{a_{n}}{n} \\
& \leqslant \max _{x \in\left[-a_{n}, a_{n}\right]} \lambda_{2 n}^{-1}\left(W^{2}, x\right) W^{2}(x) \frac{a_{n}}{n} \\
& =\max _{t \in\left[-a_{n} \cdot a_{2 n}, a_{n}^{\prime} a_{2 n}\right]} i_{2 n}^{-1}\left(W^{2}, a_{2 n} t\right) W^{2}\left(a_{2 n} t\right) \frac{a_{n}}{n} \\
& \leqslant 2 \max _{|x| \leqslant 1-(2 n)^{-\delta}} i_{2 n}^{-1}\left(W^{2}, a_{2 n} t\right) W^{2}\left(a_{2 n} t\right) \frac{a_{2 n}}{2 n} \quad(\text { by }(2.23)) \\
& \sim T\left(a_{2 n}\right)^{1,2} \sim T\left(a_{n}\right)^{1: 2}
\end{aligned}
$$

by (2.25) and (2.7).
The proof also shows that if $0<\alpha<\beta<1$,

$$
\begin{equation*}
i_{n}^{-1}\left(W^{2}, a_{n} x\right) W^{2}\left(a_{n} x\right) \sim \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2} \tag{2.26}
\end{equation*}
$$

uniformly for $x \in\left[a_{x n} / a_{n}, a_{\beta n} / a_{n}\right]$.
Proof of (1.18) of Theorem 1.2. Since $i_{n}^{-2}\left(W^{2}, x\right)\left(1-\left(x / a_{n}\right)^{2}\right)$ is a polynomial of degree $\leqslant 4 n-2$, Lemma 2.5 shows that

$$
\begin{aligned}
& \max _{x \in \mathbb{R}} \hat{i}_{n}^{-2}\left(W^{2}, x\right)\left|1-\left(x / a_{n}\right)^{2}\right| W^{4}(x) \\
&=\max _{x \in\left[-a_{n} a_{n}\right]} i_{n}^{-2}\left(W^{2}, x\right)\left|1-\left(x ; a_{n}\right)^{2}\right| W^{4}(x) \\
& \leqslant \max _{x \in\left[-a_{n} a_{n}\right]} i_{2 n}^{-2}\left(W^{2}, x\right)\left|1-\left(x_{i} ; a_{2 n}\right)^{2}\right| W^{4}(x) \\
&=\left\{\max _{t \in\left[-a_{n} a_{2 n} a_{n} a_{2 n}\right]} i_{2 n}^{-1}\left(W^{2}, a_{2 n} t\right) W^{2}\left(a_{2 n} t\right)\left(1-t^{2}\right)^{2}\right\}^{2} \\
&\left.\leqslant\left\{\max _{t \leqslant 1-\{2 n)^{-5}} i_{2 n}^{-1}\left(W^{2}, a_{2 n} t\right) W^{2}\left(a_{2 n} t\right)\left(1-t^{2}\right)^{1}\right)^{2}\right\}^{2}
\end{aligned}
$$

(by (2.23), with δ as in Lemma 2.1)

$$
\leqslant\left\{2 \frac{n}{\left.a_{n} t_{i} \leqslant 1-i 2 n\right)^{-i}} \mu_{n, a_{n}}(t)\left(1-i^{2}\right)^{12}\right\}^{2} \leqslant C_{1}\left(\frac{n}{a_{n}}\right)^{2}
$$

by Lemma 2.1 and Theorem 2.4, for n large enough. Finally, Lemma 2.1 and Lemma 2.2(b) show that given $0<\varepsilon<1$,

$$
i_{n}^{-1}\left(W^{2}, x\right) W^{2}(x) \sim \frac{n}{a_{n}}
$$

uniformiy for $|x| \leqslant(1-\varepsilon) a_{n}$, for n large enough. Hence

$$
\max _{x \in \mathbb{K}} i_{n}^{-1}\left(W^{2}, x\right)\left|1-\left(x / a_{n}\right)^{2}\right|^{12} W^{2}(x) \geqslant C_{2} n i a_{n}
$$

References

1. W. C. Bauldry, "Orthogonal Polynomials Associated with Exponential Weights" Ph D. Dissertation, Ohio State University, Columbus, 1985.
2. P. Erdos, On the distribution of roots of orthogonal polynomials, in "Proceedings. Cont. Constr. Theory Functions" (G. Alexits et al., Eds.). pp. 145-150, Akademiai Kiado Budapest, 1972.
3. G. Fretid. "Orthogonal Polynomials, Akademiai, Kiado. Budapest, 1971.
4. G. Freld, On Markov-Bernstein type inequalities and their applications, f. Appros. Theory 19 (1977), 22-37.
5. G. Freld, A. Girolx, and Q. I. Rahmas, Sur l'approximation polynomiale avec poics $\exp (-|x|)$, Canad. J. Math. 30 (1978), 358--372.
6. A. L. LeviN and D. S. Ltbinsky, Canonical products and the weights exp $\left(!-\left.x\right|^{x}\right), x>1$, with applications, J. Approx. Theory 49 (1987), 149-169.
7. A. L. Levin and D. S. Lubinsky, Weights on the real line that admit good relative polynomial approximation. with applications, J. Approx. Theory 49 (1987), 170-195.
8. D. S. Lubinsky, L_{x} Markov and Bernstein inequalities for Erdös Weighis. I. Approx. Theory 60 (1990), 188-230.
9. D. S. Lcbinsky, "Strong asymptotics for extremal errots and polynomiais associated whth Erdös weights," Pitman Research Notes, Vol. 202, Iongman, London, 1989.
10. D. S. Lubinsky and E. B. Saff, Strong asymptotics for extremal polynomials associated with weights on R, in Springer Lecture Notes," Vol. 1305, Springer-Verlag, Berlin, 1988.
11. H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 203-234.
12. H. N. Mhaskar and E. B. Saff, Where does the sup norm of a weighted polynomial live? Constr. Approx. 1 (1985), 71-91.
13. P. Nevai, Asymptotics for orthogonal polynomials associated with $\exp \left(-x^{4}\right)$, SIAM J. Math. Anal. 15 (1984), 1177-1187.
14. P. Neval, Géza Freud, orthogonal polynomials and Christoffel functions, A case study, J. Approx. Theory 48 (1986), 3-167.
15. P. Nevai and V. Totik, Weighted polynomial inequalities, Constr. Approx. 2 (1986), 113-127.
16. R. C. Sheen, Plancherel-Rotach type asymptotics for orthogonal polynomials associated with $\exp \left(-x^{6} / 6\right)$. J. Approx. Theory 50 (1987), 232-293.
